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• Traditional punishment mechanisms (i.e., blacklists) are reactive
• PreSTA: Detect malicious users (i.e., spammers) before harm is done 

HYPO-
THESES: 

• Malicious users are spatially clustered (in any dimension)
• Malicious users are likely to repeat bad behaviors (temporal)

GIVEN:

• A historical record of those principals known to be bad, and the 
timestamp of this observation (feedback)

PRODUCE:

• An extended list of principals who are thought to be bad now, 
based on their past history, and history of those around them 

Preventative Spatio-Temporal Aggregation

PROBLEM
----------

SOLUTION



TALK OUTLINE
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PreSTA Running Example: Spam Detection

• Spatio-temporal properties of spam mail
• Basis for spatial groupings 
• Calculating and combining reputations
• Classifier performance

Generalizing PreSTA: Additional Use-Cases for Model

• Malicious editors on Wikipedia
• Applicability to the QuanTM model
• General PreSTA use-case criteria

Conclusions & References



SPAM: TEMPORAL PROPERTIES
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TEMPORAL: Bad Guys Repeat Bad Behaviors

• Spammers want to maximize          
utilization of available IP 
addresses, leading to re-use

• Bot-nets will compromise a 
machine until patched

• Blacklist entries have 
predictable duration (~6 days), 
making for trivial recycling

• Most mail servers have static IP addresses, so IP acts as a persistent 
identifier – though we later discuss DHCP considerations



IP DELEGATION HIERARCHY
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IANA

RIR RIR

AS AS AS

Machine

Subnet

IP

DHCP 
Router

(1) Internet Assigned Numbers Auth.: 
Controls all IP delegation (root of trust)

(2) Regional Internet Registries: 
Continent-level equivalent of the IANA

(3) Autonomous Systems (ISPs): 
Broadcast the IPs they control via the 
Border Gateway Protocol (BGP)

(4) Local routers distribute addresses 
from some pool (i.e., a /24). Such 
subnet boundaries are NOT known

(5) Individual IP: Over time a single IP 
may have multiple inhabitants (due to 
dynamic nature – DHCP)



SPATIAL GROUPINGS
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• The IANA and RIR granularity are 
too broad to be of relevant use

IANA
/RIR

• What AS(es) are broadcasting IP?
• An IP may have 0, 1, or 2+ homesAS

• What  is /24 (256 IP) membership?
• Valuate that block and two adjacent
• Estimation of subnet membership

BLOCK

• Simplest case. Little spatial value.
• Due to DHCP, may have multiple 

inhabitants over time, though
IP

AS(es)
|1000's| 

IPs

Subnet-level
Block-Heuristic

|768| IPs

A
S

IP-level
|1| IP



SPAM: SPATIAL PROPERTIES
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SPATIAL: Bad Guys Live in Close Proximity [3] (IP)

• Some ISPs/AS willing to 
trade behavioral leniency for 
compensation: McColo 
Corp. and 3FN

• Some geographical
jurisdictions are more lenient 
than others (and this maps 
into IP space)

• As IPs become BL'ed, operations must shift to 'fresh' addresses, 
likely those from the same allocation (i.e., subnets)



PreSTA: SPAM USAGE

11/4/2009 ONR-MURI Review 8

Blacklist 
DB

Subscription
Spatial 

Analysis

Temporal 
Analysis

Cache DB

PreSTA Client

Cache Hit

Decision

BL Source
BL Source

Spamhaus

Reputation Engine

Classifier

PreSTA Server

Incoming Emails

BL Source DBs

Cache Miss

SMTP Server

PreSTA: 
Preventative 
Spatio-Temporal 
Aggregation 
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Mail 
Body

Source IP

AS

BLOCK

IP

AS-REP

BLK-REP

IP-REP

REP
ALG

Spatial
Mapping

VALUATION WORKFLOW

Plot into
3-D SpaceClassify

SPAM or HAM
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Decay FN



REPUTATION ALGORITHM
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To calculate reputation for entity α:

Old
Black
List 1

Old
Black
List 1

Old
Black
List 1

Old
Black
List 1

SELECT ROWS 
MAPPING TO α 

----> BL(α)

raw_rep(α) = Σ time_decay(BL(α)i)

i=1

i <= |BL(α)|

magnitude(α)

REP(α) = 1.0 – (raw_rep(α) * φ-1 ) 

− time_decay(*): Returns on [0,1], higher weight to more recent events
− magnitude(α): Number of IPs in grouping α
− φ: Normalization constant putting REP() on [0,1]



SVM LEARNING
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Combination strategies
Support Vector Machine
− Supervised learning
− Train over previous email 

to classify current emails

Draws surface (threshold) 
best separating points
− Can adjust penalty weight 

to keep false positives low
− Polynomial, RBF kernels 

improve on linear 
performance Ham Mails (10k)

Spam Mails (10k)

BLK-REP
IP

-R
EP

SVM Line



SPAM: TESTING DATASETS
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• Subscribe to Spamhaus provider
• Process diff’s between lists into DB
• Scores 86.2% detection w/0.37% FP

BLACKLIST

• Use RouteViews data to map IP->ASAS-MAP

• 10 weeks: 15 mil. UPenn mail headers
• Proofpoint score as definitive spam/ham tag EMAIL



SPAM: PERFORMANCE (1)
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We capture between 20-
50% of spam that gets past 
current blacklists
− By design our FP-rate 

is equivalent to BLs: 
~0.4%

Total blockage remains 
near constant: 90%
− Blacklists are reactive, 

we are predictive. We 
can cover its slack

− Cat and mouse. Graph 
should roll over time

Captures up to 50% of mail not
caught by traditional blacklists

with the same low false-positives



SPAM: PERFORMANCE (2)
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<  Temporal (single IP) example 
where our metric could mitigate 
spam reception

Probable botnet attack which our 
metric could mitigate via both 
temporal and spatial means >



SPAM: CONTRIBUTIONS
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SNARE [3] (GA-Tech)

• Supervised learning across 13-network level features, including spatio-temporal ones
• Don't need blacklists (but neither do we, only known spamming IPs)

Existing ‘Reputation Systems’ [6]

• Exclusive use of negative feedback
• Existing email reputation systems [5] focus only on sharing classifications

DISTINGUISHING CONTRIBUTIONS

• Formalization of predictive spatio-temporal reputation
• Development of a lightweight mail filter, capable of 500k+ mails/hour



FUTURE: WIKIPEDIA
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PURPOSE: Build a blacklist of user-names/IPs 
based on the probability they will vandalize

• Straightforward, vandals are probably repeat offenders
• Registered users have IDs indicating when they joined, are 

new users more likely to vandalize?
TEMPORAL

• Geographical: Based on user location (i.e., Wash. D.C.)
• Topical: A user may vandalize one topic (Rush Limbaugh), 

while properly editing another (Barack Obama)
• Anonymous users: IP address properties

SPATIAL

• Certain administrators have rollback (revert) privileges
• Comment: “Reverted edit by X to last edition by Y”FEEDBACK



FUTURE: QUANTM [2] MODEL
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IANA

RIR

AS AS

Subnet

IP

TDG?PreSTA may trivially fulfill the reputation 
component of qualifying QTM systems

− TDG-like hierarchy of IP-delegation

− Spatial groups from credential depth?

General-use case criteria:

− (1) There must be a grouping function 
to define finite sets of participants

− (2) Observable and dynamic feedback 
sufficient to construct behavior history



CONCLUSIONS
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… and such a system is useful for:

(1) Lightweight spam
filtering above 

traditional blacklists

(2) Detecting editors 
probable of vandalism 

on Wikipedia

(3) Fulfilling the 
reputation component of 

any QTM system  

…additional malicious users may be identified using...

(1) Temporal histories of principals (2) w.r.t the space in which they reside

Given a known set of malicious users
(and the time at which they mis-behaved)…
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… and such a system is useful for:

(1) Lightweight spam
filtering above 

traditional blacklists

(2) Detecting editors 
probable of vandalism 

on Wikipedia

(3) Fulfilling the 
reputation component of 
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Given a known set of malicious users
(and the time at which they mis-behaved)…

DONE IN PROGRESS FUTURE
WORK
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